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Recognition of pathogens relies on families of proteins showing great diversity. Here we construct
maximum entropy models of the sequence repertoire, building on recent experiments that provide
a nearly exhaustive sampling of the IgM sequences in zebrafish. These models are based solely on
pairwise correlations between residue positions, but correctly capture the higher order statistical
properties of the repertoire. Exploiting the interpretation of these models as statistical physics
problems, we make several predictions for the collective properties of the sequence ensemble: the
distribution of sequences obeys Zipf’s law, the repertoire decomposes into several clusters, and
there is a massive restriction of diversity due to the correlations. These predictions are completely
inconsistent with models in which amino acid substitutions are made independently at each site,
and are in good agreement with the data. Our results suggest that antibody diversity is not limited
by the sequences encoded in the genome, and may reflect rapid adaptation to antigenic challenges.
This approach should be applicable to the study of the global properties of other protein families.

I. INTRODUCTION

The number of possible amino acid sequences exceeds
the number of individual protein molecules that have
ever been synthesized. As a result, the limited set of
sequences that we see today carries a signature of evo-
lutionary history [1]. But not all of the limitations are
historical—randomly chosen sequences will not fold into
stable, compact structures [2, 3], and carrying out spe-
cific functions places yet more requirements on the se-
quence. Regardless of the balance between historical and
functional constraints, the stochastic nature of evolution-
ary change means that the sequences we observe should
be thought of as being drawn out of a probability dis-
tribution. The goal of this paper is to construct an ap-
proximation to this distribution, using a limited but bi-
ologically important example, the problem of antibody
diversity.

The ensemble of all proteins is daunting, so most work
focuses on particular families of proteins. The most
tractable examples are those in which the relevant seg-
ments of the proteins are short, and experiments provide
many independent samples of sequences from the fam-
ily. For a family of small proteins that mediate protein–
protein interactions, methods were developed to generate
new sequences that are consistent with the patterns of
single site substitutions and correlations between sub-
stitutions at pairs of sites; remarkably, most of these
new sequences fold into functional structures [4, 5]. Al-
though this work did not lead to an explicit construc-
tion of the underlying probability distribution, the im-
plicit model is equivalent to a maximum entropy model
that captures pairwise correlations but ignores higher or-
der interactions [6], and thus connects to other efforts
to describe biological networks with simplified models

∗These authors contributed equally.

[7, 8, 9, 10, 11, 12]. Maximum entropy methods have
since been used to look at protein–protein interactions in
bacterial signaling [13], and at the serine proteases [14].

A key feature of the maximum entropy approach is
its intimate connection to statistical mechanics [15, 16].
Maximum entropy models predict the underlying proba-
bilities in the form of a Boltzmann distribution, thus as-
signing an effective energy to every amino acid sequence
in our ensemble. Natural questions about this statistical
mechanics problem have clear biological correlates: What
is the entropy in sequence space, or equivalently the al-
lowed diversity of functional proteins? Does the energy
landscape break up into multiple valleys, corresponding
to clusters of closely related proteins? Are the barriers
between these valleys large, so that different clusters are
isolated, or are there paths that can smoothly mutate
one class of sequences into another? Are the interactions
among substitutions at different sites strong or weak?
Is is possible that these interactions are tuned to some
special values, perhaps analogous to critical points in sta-
tistical mechanics? Here we approach these problems in
the context of antibody diversity.

For antibodies, sequence diversity has a direct biolog-
ical function, setting the range of antigenic challenges to
which the organism can respond. Classical work has em-
phasized the combinatorial diversity generated by piec-
ing together different segments of the antibody molecule,
each of which is encoded in the genome [17]. Very re-
cently it has become possible to provide the sequences of
essentially every single antibody molecule in individual
organisms [18], and this explosion of data invites us to
look more closely at the diversity within the combined
segments, beyond that represented in the genome itself.
As we will see, for the zebrafish studied in Ref [18], this
non–genomic diversity is substantial, and concentrates
in short segments of the molecule, the D regions of these
molecules. This combination of focus on short sequences
and a nearly complete sampling of the relevant ensemble
provides a unique opportunity to address the theoretical
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questions outlined above.

II. DEFINING THE PROBLEM

All jawed vertebrates are endowed with an adaptative
immune system that responds to and ‘remembers’ a wide
range of challenges from the environment. One major
component of the immune system are the B cells, each
of which expresses multiple copies of a single antibody
molecule on its surface. Binding to these molecules is
the fundamental step by which the system recognizes an
antigen, and hence the diversity of these molecules de-
fines the range of pathogens to which the organism can
respond effectively [19]. During the development of B
cells, the genome is modified by recombination to en-
code a single antibody sequence assembled from three
pieces termed V, D and J. In the zebrafish [20], there
are 39 choices for the V region, 5 for D, and 5 for J,
for a total of 975 possible VDJ combinations or classes.
During recombination, nongenomic nucleotides are ran-
domly added and others are removed at the VD and DJ
junctions, generating what is called junctional diversity.
Further, during the lifetime of the organism, the anti-
body sequences encoded in proliferating B cells undergo
somatic hypermutation. Finally, B cells that successfully
bind pathogens proliferate, while B cells that are not used
are eliminated. As a result, the expressed repertoire of
antibodies is a complex combination of VDJ class, phy-
logenic history and pathogen environment.

The experiments of Ref [18] give us a snapshot of
the complete antibody repertoire in each of fourteen ze-
brafish, labelled A through N. More precisely, these ex-
periments extracted the mRNA for the complementar-
ity determining region 3 (CDR3) of the heavy chain of
IgM molecules, reverse transcribed, amplified, and then
sequenced the resulting cDNA using high throughput
methods. It will be important in our analysis that the
amplification step has biases, and so all averages over
the distribution of sequences must be re–weighted by a
primer dependent amplification, as discussed in [18] (see
the appendix). Each fish yielded from 28,000 to 112,000
sequence reads of ∼ 200 nucleotides covering the last 90
nucleotides of V, and all of D and J.

The V and J segments of all the sequences are eas-
ily recognized by aligning with the genome, discarding
a small fraction of sequences with stop codons or frame
mismatches. The situation for D regions is more subtle,
and so we define the D region to be all the residues that
lie between the identifiable parts of the V and J segments,
as explained more fully in the appendix.

We find that the D region is much more diverse than
expected from its genomic origin, and concentrates most
of the nongenomic diversity, as illustrated in Fig. 1. Most
obviously, in the genome D regions range from 11 to 14
nucleotides, while in the sampled sequences the D re-
gion range from 1 to 6 amino acids (3 to 18 nucleotides;
Fig 1A). If we try to match each sequence to one of
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FIG. 1: Antibody diversity concentrates in the D re-
gion (data from fish A). A Length distribution of the D re-
gion aminoacid sequences. B. Quality of the assignment of
the D region to a genomic template, measured by the differ-
ence between the alignment scores of the first and second best
matches (normalized by the best attainable score difference).
C. Left: mutual information between residue positions across
all VDJ classes. Right: mean mutual information within each
VDJ class. Variability only remains in the D region.

the genomic sequences, the quality of these assignments
typically is quite poor (Fig 1B). By using mutual infor-
mation between residue positions as a measure of vari-
ability within VDJ classes (see the appendix), we find
that residues in the D region are both variable and cor-
related even within a given D class, whereas the V and
J regions show very little diversity within their classes
(Fig 1C). Junctional diversity, somatic hypermutations
or other mechanisms may be the source of this nonge-
nomic D variability, and could explain the poor quality
of the D assignments. Independent of the mechanism,
these results suggest that, in trying to define the distri-
bution of sequences represented in the system, we should
focus our attention on the D region.

To be precise, we describe each observed D region se-
quence as σ = (σ1, σ2, · · · , σL), where L is the length of
the sequence. At each site along the sequence, σi can take
on twenty different values, corresponding to the twenty
possible amino acids (σi = Ala, Arg, Asn, . . . ). We would
like to know the probability P (σ) that any particular se-
quence will be found in the antibody repertoire of each in-
dividual. The difficulty is that there are ∼ (20)Lmax pos-
sible sequences, where Lmax = 8 is the maximum length
of the D region; in principle each sequence can occur with
a different probability, and hence the number of possible
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FIG. 2: Maximum entropy model. A. The model of
the D region is viewed as a system of interacting residues
(σ1, . . . , σL) in thermal equilibrium, schematized here by its
interaction network for K = 2. To each sequence σ is asso-
ciated an energy E(σ), Eq (3). Then the sequences of the
repertoires are drawn at random from the Boltzmann distri-
bution , Eq (2). B. Pairwise frequencies of nearest– (red)
and second–neighbor (yellow) residues. Left: comparison be-
tween the model prediction, where the model was fitted with
the training data, and the testing data. Right: direct com-
parison between the training data and the testing data. The
scatter is of the same magnitude, showing that the model is
as precise as the data allow.

sequences is also the number of parameters required to
specify the distribution. This number, ∼ 2.5 × 1010, is
much larger than the number of independent measure-
ments that we can make, and perhaps even larger than
the number of B cells in the entire zebrafish at any one
moment. How, then, can we make progress?

III. MAXIMUM ENTROPY MODELS OF THE
D REGION

While experiments cannot characterize the entire dis-
tribution P (σ), it is possible to make reliable measure-
ments of many averages over this distribution. For ex-
ample, we can characterize the probability that any sin-
gle amino acid appears in the sequence, P1(σ). Further,
we can characterize the probability that two particular
amino acids appear separated by a distance k along the
sequence, P2(σ, σ′; k), and we can do this for nearest

neighbors (k = 1), next nearest neighbors (k = 2), and
so on. Notice that these quantities do not refer to spe-
cific sites along the sequence, but rather to pairs of sites
separated by given distances; in this way we can analyze
sequences that have variable lengths and are difficult to
align, as observed for the D regions. We could continue
along this line, characterizing the probability of occur-
rence of triplets, quartets, etc., but at some point we will
run out of data.

The central idea of maximum entropy models is to
take some limited set of averages seriously as a charac-
terization of the system, and then build the least struc-
tured model for the distribution P (σ) that is consistent
with these data [15, 16]. Formally, minimizing structure
means maximizing the entropy

S[P ] = −
∑
σ
P (σ) log2 [P (σ)] . (1)

Here we will find the maximum entropy distribution con-
sistent with the single residue frequencies, P1(σ), with
the pairwise distributions of amino acids along the se-
quence, P2(σ, σ′; k), and with the observed distribution
of lengths of the D region, P (L). Finding this model dis-
tribution, which we denote P (m), involves solving an op-
timization problem (maximize S) subject to constraints
(the observed distributions). Because of the connection
between maximum entropy distributions and statistical
mechanics, the form of the solution is well known.

We can write P (m) in the form of the Boltzmann dis-
tribution, as if the sequences represented the state of a
physical system in thermal equilibrium:

P (m) =
1
Z

exp [−E(σ)] , (2)

where the effective energy of each sequence is

E(σ) = −µ(L)−
L∑

i=1

h(σi)−
K∑

k=1

∑
i,j

i−j=k

Jk(σi, σj), (3)

To complete the analogy to thermodynamics, we should
think of the temperature as being such that kBT = 1.
Then µ(L) acts like a chemical potential for adding
residues, h(σ) is a biasing field that prefers some amino
acids over others, and the couplings Jk describe the inter-
actions between amino acids at different sites, reaching
across a range K, as schematized in Fig 2A. The h’s,
J ’s and µ’s must be chosen such that P (m)(L), P (m)

1 and
P

(m)
2 agree with the data.
Calculating P (m)(L), P (m)

1 and P (m)
2 from the full dis-

tribution P (m)(σ) is hard in general, and the inverse
problem of inferring the model parameters from these ob-
servables is clearly not easier. We solve the inverse prob-
lem by combining Monte Carlo simulations with gradient
descent (see the appendix). The number of parameters
can be fairly large, 399K + 19 + Lmax ∼ 103, although
vastly smaller than the number of possible parameters
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FIG. 3: Local observables and the entropy are well cap-
tured by the model. A. Position-dependent aminoacid fre-
quency. Top, frequency as a function of position i = 1, . . . , 4
from the left end of the sequence. Bottom: comparison be-
tween model and data of position-dependent frequencies, nor-
malized by the prediction of the independent model. Error
bars are obtained as the standard deviation over many choices
of partition between training and testing sets. B. Compari-
son of triplet frequencies of contiguous aminoacids, normal-
ized by the prediction of the independent model. The small
crosses illustrate one choice of the training/testing partition.
The black error bars represent the average measurement er-
ror made on a triplet frequency at that frequency value, ob-
tained as the standard deviation over many choice of the train-
ing/testing partition. The diagonal error bars show the av-
erage error between model and data. C. Entropy of all fish:
from frequency counting, from the independent model, and
from the maximum entropy model with range K = 1, . . . , 4.

(20)Lmax . To test the validity of our method and control
for overfitting, we learned the maximum entropy distri-
bution from only one half of the sequences (training set).
Then, the model predictions were compared to the sec-
ond half of the data (testing set). We solved the inverse
problem and tested our solution for all 14 fish and for
different interaction ranges K = 1, 2, 3, 4. Our results
showed excellent agreement with the data, as illustrated
in Fig. 2B for the pairwise frequencies in fish A (K = 2).

IV. TESTING AND EXPLORING THE MODEL

The maximum entropy model is the least structured
model consistent with the observed pairwise correlations
among amino acids, but of course there is no guarantee
that Nature is described by this minimal model. To test

the model, we look systematically at its predictions for
measurable quantities that are not already used in deter-
mining the model parameters. If we can convince our-
selves that these predictions are at least approximately
correct, we can take the model more seriously and ask
what it tells us about the nature of antibody diversity.

A. Local biases

The model we have constructed does not incorporate
any site specificity—interactions between amino acids de-
pend on the distance between them but not on their ab-
solute location along the sequence [Eq (3)]. But, since
amino acids at the start or end of the sequence have only
half the number of neighbors that are available to sites
in the middle of the sequence, the model predicts ‘end
effects’ which will be manifest as position specific biases
in amino acid composition. As shown in Fig 3A, these
predicted biases can be large, so that the probability of
finding particular amino acids at specific sites, P 1

i (σ),
can vary by more than two orders of magnitude. These
predictions are in very good agreement with the data.
We emphasize once again that these predictions of site
specific substitution patterns are obtained from a model
that has no explicit site specific information, and which
is learned from an ensemble of sequences that have not
been aligned. In a similar spirit, we find good agreement
between the predicted and observed probabilities of con-
tiguous amino acid triplets (Fig. 3B), even though the
model has no explicit three site interactions.

B. Zipf’s law

The space of possible sequences is so large that we
cannot test the predictions for the distribution P (σ) di-
rectly. Still, we can get a global view of the distribution
through a Zipf plot, in which we put the observed se-
quences in order based on their frequency of occurrence,
and plot probability P vs. rank r, as in Fig 4. We see
that both the data and the predictions of the model are
very close to obeying Zipf’s law, P ∝ 1/r [21, 22], and the
data and model agree very well with one another. The
same pattern is observed in all fish, although the rank-
ing of particular sequences varies. The dynamic range
over which we can observe Zipf’s law is limited by the
number of independent sequences that are read in the
experiments, but the model predicts that this behavior
should continue even if this number were extended by an
order of magnitude.

Zipf’s law first attracted attention in the context of
language [22], and many models have been proposed for
the origin of this behavior. Even before Zipf’s work,
it was known that some growth processes with muta-
tions can generate Zipfian distributions [21, 23]. Since
we have built a model out of measured pairwise correla-
tions, with strong analogies to statistical mechanics, we
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FIG. 4: The distribution of D regions obeys Zipf’s law.
Probability of D region sequences as a function of their rank
in fish A, as observed from frequency counting (blue line), and
as predicted by the independent (green line) and the maxi-
mum entropy model with K = 2 (red line). The dashed line
has slope −1. Inset: the same for all fish, from frequency
counting.

emphasize that Zipf’s law reflects the proximity of a crit-
ical point in the strength of the underlying interactions.
The rank of a state σ is determined by the number of
states with higher probability, or lower energy in Eq (2).
But counting the number of states is equivalent to mea-
suring the (microcanonical) entropy, and then Zipf’s law
is the statement that the entropy grows linearly with the
energy, with slope one (see the appendix). This locally
linear relation between energy and entropy is characteris-
tic of thermodynamic systems at a critical point [24], and
could not emerge from a system of noninteracting units,
or even from an interacting system with slightly weaker
or stronger correlations. Thus, the strength of correla-
tions that we see in the real sequences corresponds to
interactions with a critical strength, restricting the set
of allowed sequences substantially, but not forcing the
system to ‘freeze’ into a small set of possibilities.

C. Entropy

The fundamental quantity in a maximum entropy con-
struction is the entropy S itself. Entropy measures the
diversity in sequence space, and hence is also a fundamen-
tal quantity from a biological point of view. If we imag-
ine that sequences are constructed by choosing amino
acids at random, then the entropy could be as large as
log2(20) bits per residue, or a total of ∼ 15 bits for the
average length D region. For almost all fish (F is an
exception, and is excluded from further analyses), the
observed biases in the use of the different amino acids do
not reduce this very much; that is, if we choose amino
acids independently at every site but with the observed

frequencies,

Pind(σ) ≡ P (L)
L∏
i=1

P1(σi), (4)

then the entropy S[Pind] of this independent model is
nearly log2(20) bits per residue. We can think of the max-
imum entropy model as part of a hierarchy, in which the
entropy is reduced every time we take account of addi-
tional correlations [25]. As shown in Fig 3C, the entropy
is reduced significantly as we take account of correla-
tions between neighboring amino acids, corresponding to
K = 1 in Eq (3). It is reduced further when we in-
clude next–nearest neighbors (K = 2), and the reduction
seems to plateau as we include more distant neighbors,
K = 3, 4. Including all of these pairwise correlations
pushes the total entropy well below 10 bits for all fish, so
that out of tens of thousands of possible sequences, most
of the distribution is concentrated in only a few hundred
(∼ 2S) sequences, and this is consistent with what we
observe in the Zipf plots (Fig 4). This restriction of se-
quence space is even more dramatic when we realize that,
given the maximum length of the D regions, there really
are tens of millions of possible sequences.

The difference between the entropy of the independent
model and the true entropy, I = S[Pind]−S[P ], measures
the overall strength of correlations in the system, and
is called the multi–information. The maximum entropy
model predicts a value for I(m) = S[Pind]−S[P (m)] which
must be smaller than I, and the ratio I(m)/I meausres
the fraction of the correlated structure that we capture in
our model. The difficulty is that because sequence space
is large, estimating the entropy S[P ] is difficult. Methods
are available, however, which allow us to estimate S[P ]
even when we don’t have enough samples to accurately
estimate P (σ) itself, as explained in the appendix and
[26]. Using these methods, we find, as shown in Fig 3C,
I(m)/I in the range from 0.67 to 0.91 across the different
fish. Thus our maximum entropy model, based only on
pairwise correlations, captures between two thirds and
ninety percent of all the correlated structure in the dis-
tribution of sequences.

D. Comparison between fish

The analysis of entropies shows that the repertoires
of individual fish span only a tiny fraction of the possi-
ble sequence space. Do the repertoires of different fish
overlap with each other, or are they distinct? To an-
swer this question, we first computed a similarity factor
Sim[Pα, Pβ ] between repertoire distributions (see the ap-
pendix). This factor takes values between 0 and 1 and
measures the difficulty of guessing to which of the two
repertoires (α or β) a given sequence belongs. Figure 5A
shows the similarity factor for all pairs of fish, as calcu-
lated by the maximum entropy model (see the appendix).
While the choices of V, D and J segments are correlated
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FIG. 5: Fish repertoires overlap yet are specific. A.
Table of similarity factors between all pairs of fish. The sim-
ilarily factor is defined as minλ

P
~σ Pα(~σ)1−λPβ(~σ)λ, where

Pα and Pβ are the probability distributions of the D regions
in fish α and β. The thick red squares show the families.
B. Mutual information between fish and sequence vs. the
entropy of fish. Each point is a subgroup of all 13 fish (ex-
cluding fish F), color-coded by its size (from dark blue to red).
Filled circles are averages over groups of each size. Upper In-
set: comparison between mutual information estimated from
counting observed sequences, and that predicted by the max-
imum entropy model. Lower Inset: Mutual information vs.
fish entropy, as predicted by the independent model.

with the family relations among the fish [18], this mea-
sure of similarity among D regions is not.

To study repertoire specificity beyond two fish, we
looked at the mutual information between the identity α
of a fish and the sequence σ of a single antibody molecule,

I(α; σ) ≡
∑
σ,α

P (σ, α) log2

[
P (σ, α)
P (σ)P (α)

]
, (5)

where P (σ, α) is the probability that a sequence picked
at random in the dataset be σ and come from fish α.
Figure 5B represents this mutual information as a func-
tion of the fish entropy Sα = −

∑
α P (α) log2[P (α)] for

many subgroups of fish of various sizes. The fish entropy
is an upper bound to the mutual information, and is only
reached when sequences give perfect information about
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FIG. 6: Metastable states (data from fish A). A Lower:
scores of pairwise alignments between the genomic segments
D1-D5 and the metastable states. The bar plot represents
the total weight of the basins of attraction of each metastable
state. Upper: scores of alignments of the genomic segments
with themselves and with each other are shown for compar-
ison. B. Basins of attractions of the seven most populated
states. A density plot represents the energy of the sequences
vs. the number of steps separating them from their metastable
state by steepest descent. C. Connectivity of the sequence
space. Lines indicate the existence of paths of adjacent se-
quences between two metastable states. When the link is a
solid line, there exists a path made only of single-nucleotide
mutations.

which fish they came from, i.e. when each sequence be-
longs to one fish uniquely. Although the mutual informa-
tion remains far from this upper bound, it keeps growing
linearly with the entropy as the size of the group is in-
creased, each fish adding its own unique diversity; the
slope of information vs. entropy is roughly 0.5, so that
half of the diversity is unique to each individual and half
is shared across the population. Importantly, this indi-
viduality of the sequence ensembles depends dominantly
on correlations, since in the independent model, Pind(σ)
from Eq (4), the mutual information between identity
and sequence is roughly a factor of four smaller (inset to
Fig 5B). All 13 fish do not suffice to cover the potential
diversity of D regions, as evidenced by the absence of
saturation.

E. Multivalley landscape

The energy function in Eq (3) includes competing
interactions—the couplings J can be positive or nega-
tive, favoring both correlated and anti–correlated amino
acid substitutions at different sites. From the statisti-
cal mechanics of disordered systems [27] we know that
such competition can lead to ‘frustration’ and many
metastable states. A metastable state is defined as a lo-
cal mimimum of the energy landscape or, in probabilistic
language, a local maximum of the probability distribu-
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tion. Does this happen in the case of antibody diversity?
Our model assigns an energy to every sequence, but

to find local minima in this landscape we need to define
‘local.’ Since mutations occur at the level of nucleotides,
we work in the space of nucleotide sequences; to assign
a (free) energy to nucleotide sequences we translate to
amino acids, compute E(σ) from Eq (3), and add a cor-
rection term for the entropy of codon usage. Then we say
that two sequences are adjacent if: (i) they differ by one
nucleotide; or (ii) they differ by one nucleotide insertion
and one deletion; or (iii) they differ by three insertions
or three deletions; the last criterion is necessary because,
by construction, the lengths of D regions is a multiple
of 3. With this conservative definition, we find ∼ 10 lo-
cal minima per fish; examples are shown in Fig 6. Some
of these states correspond to the D regions encoded in
the genome, as shown in Fig 6A, but many do not. The
structure of the energy landscape, and hence the proba-
bility with which sequences appear in the organism’s an-
tibody repertoire, thus has elements which are not simply
a record of genomic history, but presumably reflect rapid
adaptation to the antigenic environment.

Each metastable state defines a basin of attraction or
valley in the energy landscape, and we can assign each se-
quence to its corresponding valley by moving ‘downhill:’
starting from a given sequence, go to the lowest energy
neighbor, and continue doing so until the energy stops
decreasing and a metastable state has been reached. Fig-
ure 6B represents the energy of all sequences in a basin
of attraction as a function of their distance (in num-
ber of steps) to the metastable states; although there
are differences of detail, the different basins have very
similar structures. As we explore away from the mini-
mum energy in each basin, at some point we reach the
‘pass’ which connects neighboring valleys; the trajecto-
ries over these passes are analogous to the trajectories
from reactants to products in a chemical reaction, with
the pass identifiable as the transition state [28]. Since the
sequences are not too long, we can find these paths by a
conventional Monte Carlo procedure (see the appendix),
and in most cases we found continuous paths through
adjacent observed sequences between metastable states.
When the two metastable states had the same length,
we found paths where each step was a single nucleotide
mutation. Figure 6C summarizes the connections among
the seven most populated metastable states in the reper-
toire of fish A. Taken together, these results on the en-
ergy landscape imply that the repertoire explores much
of the sequence space, and is not slaved to the genomic
templates or to any specific sequence arising in the adap-
tation process.

V. SUMMARY AND DISCUSSION

The formation of the antibody repertoire is an exam-
ple of an accelerated evolutionary process under selective
pressure. Antibodies in a given organism are correlated

both through their genomic origin and as a result of the
adaptation history. In this study we have analyzed the
repertoire of B cell antibodies by building compact mod-
els of the hypervariable region of their heavy chain, based
on the principle of maximum entropy.

The reduction of parameters achieved by the model is
enormous. Even though we are looking at the relatively
short hypervariable D regions, there are tens of millions
of possible sequences, and in principle each sequence oc-
curs with a different probability in the repertoire. In
constrast, the number of parameters of our model is of
order 400K, where K is the interaction range. Impor-
tantly, this number scales reasonably with sequence size,
making our approach tractable for systems in which the
relevant sequence is much longer, including the hyper-
variable regions in other species. The compactness of the
model allows for generalization, so we can predict quanti-
ties that are not deducible simply by counting sequences
in the observed sample: the overall size of the repertoire,
the overlaps between repertoires of different individuals,
and the probability of finding new, as yet unobserved,
sequences in larger samples from the same individual.

The maximum entropy construction accounts for cor-
relations between amino acid substitutions at different
residue positions through an effective interaction struc-
ture. These interactions are strong enough to generate a
dramatically different ensemble of sequences than would
be expected if substitutions at each site were indepen-
dent. The diversity of the repertoire is substantially re-
duced (from an entropy of ∼ 14 bits to ∼ 8 bits), the
distribution of sequences obeys Zipf’s law, and the dis-
tribution has a complex structure of ‘metastable states,’
clusters of sequences with high probability.

We have addressed the question of individuality, using
our model and tools from information theory. At one
extreme, the fish could be completely different, and each
new fish would bring a whole new set of unique sequences.
At the other extreme, fish could have more or less identi-
cal repertoires, sharing the same antibodies in the same
proportions. We found an intermediate situation, where
about 50% of the repertoire diversity was unique to each
fish, and the rest shared among all fish. As one concate-
nates the individual repertoires, including more and more
fish, the size of the resulting meta–repertoire must satu-
rate, since the number of possible antibody sequences is
finite. But this saturation is not reached even for thirteen
fish, meaning that each fish is still unique compared to
all other twelve taken together, and not only compared
to each of them separately.

The details of the adaptation process undergone by
the repertoire are largely unknown, and our model only
provides a first step to aid in its study. What is the
mutation mechanism? How do recognition and selection
work? Our observation of Zipf’s law provides an impor-
tant constraint on these mechanisms. As we have empha-
sized, this behavior arises only if the interactions between
substitutions at different sites have a critical strength.
But these interactions are just a summary of the muta-
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tion and selection dynamics. There are simple growth
processes with mutation that can generate Zipfian distri-
butions [23], but much work remains to find a realistic
model that generates the full structure of P (σ).

The structure of the energy landscape underlying our
model shows that the repertoire decomposes into sev-
eral components. Each component is centered on a
metastable state, a peak in the probability distribution of
sequences. Some metastable states are closely related to
the genomic templates, although rarely identical, while
others are not attributable to any genomic template. We
can think of these metastable states as markers of adap-
tation. For example, an infection could have caused the
proliferation of antibodies particularly efficient for rec-
ognizing a specific antigen, thus creating a peak in the
probability landscape. This suggests the possibility of
using metastable states and their basins of attraction for
probing infectious history, perhaps in experiments that
follow the dynamics of the sequence ensemble over time.

The clusters associated with the metastable states are
not completely disconnected from one other: we found
continuous paths of observed sequences between most
metastable states. This means that, far from being slaved
to their genome, the D sequences have the freedom to
explore sequence space extensively during the adaptation
process, forming a large cloud of possibilities between the
higly concentrated regions of the sequence space, i.e. the
metastable states, whether they be genomic or not. The
method we have used for finding these paths—a Metropo-
lis walk in energy space—further illustrates the power of
the maximum entropy model: since it naturally favors
low energy barriers, this algorithm is more likely to find
paths where all sequences are present in the data. More
generally, it could be used as a tool for retracing muta-
tion paths between any two sequences, and could lend us
insight into the repertoire’s evolutionary history.

Finally, the success of maximum entropy models in
accounting for the higher order statistical structure of
the sequence ensemble encourages us to think that this
approach is more widely applicable. The maximum en-
tropy formalism shows how, as in many statistical physics
problems, the observable correlations between amino acid
substitutions at any two sites provide the signatures of
collective behavior in the system as a whole. The idea
that crucial aspects of life should be viewed as emergent,
collective phenomena has been discussed for decades.
The challenge has been to move beyond metaphor by de-
veloping precise mathematical tools for extracting quan-
titative models of this collective behavior from experi-
ment. We believe that we have taken useful steps in this
direction in the work reported here.
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APPENDIX

A. Aligning sequences

The dataset [18] consists of a list of ∼ 200 nucleotide
long sequences for each fish. Each read is aligned to a V
and J genomic template using the Smith–Waterman al-
gorithm [29] with uniform scoring matrix (1 for a match
and -1 for a mismatch), and then we isolate the subse-
quence that starts after the last nucleotide aligned to V,
and ends before the first nucleotide aligned to J. This
subsequence is then aligned with each of the five D tem-
plates, and assigned to the template that gave the best
alignment score. To estimate the quality of this assign-
ment, we calculate the score difference between the first
and second best matches, divided by the same quantity
assuming that the sequence is exactly identical to its ge-
nomic template. This ratio, which we call discriminabil-
ity, is 0 when the two best genomic matches have the
same score, and 1 when the sequence to assign is identi-
cal to a genomic template. Fig. 1B shows the distribution
of the discriminability ratio across all sequences in fish A.

Reads that have a stop codon, or for which the read-
ing frames of the V and J segments are not congruent,
are discarded. The remaining reads are translated into
aminoacid sequences, which are aligned with their V and
J genomic aminoacid sequences. Our analysis focuses on
the D-region aminoacid subsequence, which is composed
of the residues located strictly between the last aligned
residue of V and the first aligned residue of J. The length
distribution of the obtained D regions is shown Fig. 1A.

For the purpose of measuring statistical quantities,
each sequence read σ is assigned a weight w(σ) inversely
proportional to the PCR bias associated to its sequence
primer [18]. Thus the mean of any observable O(σ) will
be estimated using:

〈O〉 =
∑
s w(σ)O(σ)∑

s w(σ)
. (6)

B. Diversity across and within VDJ classes

To estimate the variability and correlations among
residues, we calculated the mututal information between
pairs of residues at positions i and j of the sequence,
which measures the degree of correlation between two
positions, and is defined by:

Iij =
∑
σ,σ′

Pij(σ, σ′) log2

Pij(σ, σ′)
Pi(σ)Pj(σ′)

(7)

where Pi(σ) is the probability of having residue σ (= Ala,
Arg, Asn, . . .) at position i, and Pij(σ, σ′) the probabil-
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ity of having σ at position i and σ′ at position j. These
probabilities are estimated by frequency count, weighted
by the primer dependent PCR bias as in Eq (6). For the
purpose of comparing sequences at the same positions,
we performed a multiple alignment of all the sequences.
For each read, the V and J regions were aligned to their
genomic template. Then, all 39 V and all 5 J genomic
templates were aligned with the multiple sequence align-
ment software ClustalW. Since we could find no satisfac-
tory multiple alignment of the D regions or even the 5 D
templates, we arbitrarily aligned all D regions by their
first amino acids.

The left panel of Fig. 1C shows that antibody se-
quences indeed are highly variable and show large pair-
wise correlations, in agreement with the recombination
scenario. Diversity in the choice of the V, D, J genomic
segments induces variability at each residue position (as
measured by the diagonal terms of the mutual infor-
mation matrix, i.e. the single-position entropies), and
these variables are themselves correlated through their
common genomic cause (as measured by the off-diagonal
terms).

We can estimate the part of diversity that is not due
to recombination by calculating the average mutual in-
formation within VDJ classes: I(cond)

ij = 〈Iij(V DJ)〉V DJ
(where Iij(V DJ) is the mutual information within VDJ),
shown in the right panel of Fig 1C. This mutual informa-

tion is small throughout the V and J segments, indicat-
ing that the choice of the V and J templates is the main
source of diversity in these regions. In contrast, the D
region remains diverse even within D classes.

C. Solving the maximum entropy model

For a set of parameters (µ, h, J), the observables
P (m)(L), P (m)

1 , and P (m)
2 are estimated by the Metropolis

algorithm. Starting from the independent model as ini-
tial condition: µ(L) = logP (L), h(σ) = logP1(σ), and
Jk = 0, we implement the following update rules:

µ(L) ← µ(L) + ε1 log
P (L)

P (m)(L)
, (8)

h(σ) ← h(σ) + ε1 log
P1(σ)

P
(m)
1 (σ)

, (9)

Jk(σ, τ) ← Jk(σ, τ) + ε2 log
P2(σ, τ ; k)

P
(m)
2 (σ, τ ; k)

. (10)

The last of these three rules is implemented every 5 steps,
while the first two rules are implemented the remaining
four steps. We set ε1 = 0.005 and ε2 = 0.01.

D. Entropy calculations

To calculate the entropy of the probability distribution P , we need an estimate of the number P (σ) for each D
region sequence σ. We estimate this number using Eq. 6. The distribution is undersampled due to the large number
of possible sequences compared to the actual number of reads, and therefore we expect some systematic error. To
reduce that error we compute the entropy with the method described in [26], which extrapolates the infinite-sample
limit from finite-sample estimates.

The entropy of the model distribution P (m) can, on the other hand, be calculated with arbitrary precision using
thermodynamic integration. We define

Z(β) =
∑
σ

exp

µ(L) +
L∑

i=1

h(σi) + β

K∑
k=1

∑
i,j

i−j=k

Jk(σi, σj)

 , (11)

such that Z(1) = Z, and Z(0) =
∑
L e

µ(L)
[∑

σ e
h(σ)

]L
.

We obtain Z by calculating the following integral numer-
ically:

logZ(1) = logZ(0) +
∫ 1

0

dβ
d logZ(β)

dβ
, (12)

with

d logZ(β)
dβ

=
∑
i,j

i−j=k

〈Jk(σi, σj)〉β , (13)

where the mean 〈·〉β is taken with weights given by Eq
(11). This quantity can be computed by the Metropolis
algorithm for each β. Finally, the entropy is given by:

S[P (m)] = logZ + 〈E(σ)〉β=1, (14)

where the second term is also computed by Metropolis.

E. Zipf’s law and criticality

We are describing the distribution of states σ in the
Boltzmann form, Eq (2). Then a natural quantity is the



10

density of states,

ρ(E) =
∑
σ
δ [E − E(σ)] . (15)

In the limit of a large system, ρ(E) becomes smooth, so
that n(E) = ρ(E)∆ is the number of states with energy
E, assuming we have some finite resolution ∆. The log
of this number is the entropy, lnn(E) = S(E). Further,
in the thermodynamic limit we expect that both entropy
and energy are extensive variables, so we can define the
energy and entropy per degree of freedom,

ε = E/N (16)
s(ε) = S(E = Nε)/N, (17)

where N is the number of degrees of freedom. It’s hard
to “measure” the density of states ρ(E), but it’s easier to
think about the number of states with energy less than
E, which we’ll call N (E). By definition,

N (E) ≡
∫ E

dE′ ρ(E′). (18)

At large N , we then have

N (E) =
1
∆

∫ E

dE′ exp[S(E)] (19)

=
N

∆

∫ E/N

dε′ exp[Ns(ε′)] (20)

≈ N

∆
eNs(E/N)

∫ ∞
0

dx e−Ns
′(E/N)x (21)

=
1

∆s′(E/N)
eNs(E/N). (22)

But the rank of state σ is exactly the number of states
with energy smaller that E(σ),

rσ = N [E = E(σ)] . (23)

With our expression for N we can write

ln(rσ) = Ns [E(σ)/N ]− ln [∆s′(E/N)] , (24)

which is dominated by the first term at large N . Then
Zipf’s law, P (σ) = A/rσ means that

lnP (σ) = −Ns [E(σ)/N ] + ln [A∆s′(E/N)] . (25)

But from the Boltzmann distribution we have

lnP (σ) = −E(σ)− lnZ, (26)

so Zipf’s law implies

Ns(E/N) = S(E) = E + · · · , (27)

where · · · denotes terms independent of E or terms which
vanish relative to S in the large N limit.

F. Similarity factor

The similarily factor between two distribu-
tions Pα and Pβ is defined as Sim[Pα, Pβ ] =
minλ

∑
σ Pα(σ)1−λPβ(σ)λ. The similarity factor

appears naturally in the asymptotic error of the fol-
lowing discrimination task. Suppose that we know Pα
and Pβ , which describe the repertoires of two fish α
and β, and that we are given N sequences σ1, . . . ,σN ,
which either all come from fish α, or from fish β. What
is the probability of attributing the sequences to the
wrong fish, and how does it decay with the number of
observations N?

The log–likelihood for N sequences {σ1, . . . ,σN} com-
ing from α is

∑N
i=1 logPα(σi), and likewise for β. One in-

fers that the sequences came from β if the log–likelihood
for β is larger, and vice–versa. Thus the probability of
error is, assuming the sequences came from α:

P(error) =
∑

σ1,...,σN

N∏
i=1

Pα(σi)θ

[
N∑
i=1

log
Pβ(σi)
Pα(σi)

]
. (28)

Using the integral representation of θ(x) and a saddle-
point estimate, we find the asymptotic behavior of the
error probability for large N :

P(error) �

[
min
λ

∑
σ
Pα(σ)1−λPβ(σ)λ

]N
, (29)

which is symmetric in α and β, and is exactly
(Sim[Pα, Pβ ])N .

For each λ, the sum
∑

σ Pα(σ)1−λPβ(σ)λ can be com-
puted directly from frequency counts, or, in the case of
the model distribution, by thermodynamic integration as
explained above. The minimum over λ is obtained by a
line minimization search.
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Theory and Beyond (World Scientific, Singapore, 1987).

[28] P. Hänggi, P. Talkner and M. Borkovec, Reaction–rate
theory: Fifty years after Kramers. Rev Mod Phys 62:251–
341 (1990).

[29] T. F. Smith and M. S. Waterman, Identification of com-
mon molecular subsequences. J Mol Biol 147:195–197
(1981).

http://arxiv.org/abs/q-bio/0611072
http://arxiv.org/abs/q-bio/0611072

	Introduction
	Defining the problem
	Maximum entropy models of the D region
	Testing and exploring the model
	Local biases
	Zipf's law
	Entropy
	Comparison between fish
	Multivalley landscape

	Summary and Discussion
	Acknowledgments
	APPENDIX
	Aligning sequences
	Diversity across and within VDJ classes
	Solving the maximum entropy model
	Entropy calculations
	Zipf's law and criticality
	Similarity factor

	References

